

Enhancement of near-inertial waves by cyclonic eddy in

the northwestern South China Sea during spring 2022

- 3 Qi'an Chen^{1,2}, Hongzhou Xu^{1*}, Dongxiao Wang^{3,4}, Bo Hong^{5*}, Chunlei Liu^{6,7,8},
- 4 Zheyang Zhang¹, Huichang Jiang¹, Wei Song³, Tong Long¹, Ling Wang^{1,2}, Sumin Liu¹,
- 5 Rongjie Chen^{1,2}
- 6 ¹Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- 7 ²University of Chinese Academy of Sciences, Beijing, 100049, China
- 8 ³School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
- 9 ⁴South Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
- 10 5School of Civil and Transportation Engineering, South China University of Technology, Guangzhou,
- 11 510641, China
- 12 ⁶College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
- 13 ⁷South China Sea Institute of Marine Meteorology, Guangdong Ocean University, 529568, Zhanjiang,
- 14 China
- 15 CMA-GDOU Joint Laboratory for Marine Meteorology, Guangdong Ocean University, Zhanjiang,
- 16 524088, China
- 17 Correspondence to: Hongzhou Xu (Email: hzxu@idsse.ac.cn); Bo Hong (bohong@scut.edu.cn)
- 18 Abstract. By analyzing dataset derived from four moorings during spring 2022, this study provides
- 19 direct evidence that near-inertial waves (NIWs) can be largely enhanced by a passing cyclonic eddy
- 20 (CE) in the northwestern South China Sea. Results show that the enhancement of NIWs mainly
- 21 occurred at north side of the CE due to asymmetry of eddy structure. In vertical, the enhancement
- 22 concentrated at above 200 m and reached peaks at around 100 m. Significant energy transfer rates
- between the CE and NIWs appeared at the same depth of the enhancement that can reach up to 6×10^{-10}
- 24 m²/s³ at the CE's edge. Under impact of the CE, power of the first five NIWs modes were promoted
- 25 significantly and dominated by the second and third modes. Overall, the CE transferred energy to
- 26 NIWs before near-inertial kinetic energy reaching its peaks, while NIWs gave energy back to the CE
- 27 after the peaks.

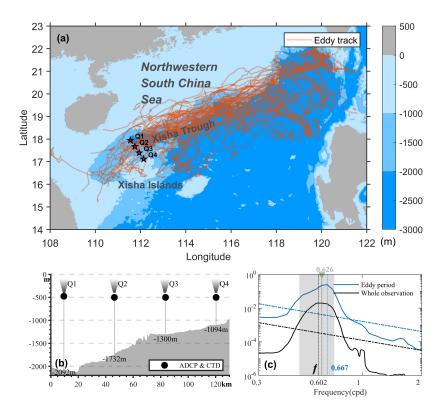
28 1 Introduction

- 29 Near-inertial waves (NIWs) are ubiquitous features throughout the global ocean with frequencies
- 30 near the Coriolis frequency f (Garrett, 2001). As dominant modes of high-frequency variability in
- 31 oceans, they contain half of the kinetic energy in internal wave fields (Alford, 2003; Ferrari and

33 dissipate into microscale turbulent mixing, providing an energy source for abyssal diapycnal mixing 34 (Ferrari and Wunsch, 2009; Chen et al., 2017). Therefore, NIWs are of vital importance for energy 35 cascade among multiscale dynamic processes. 36 Due to horizontal spatial scales of 10-100 km and slow group speed of NIWs, they are likely to 37 interact strongly with mesoscale eddy in oceans (Alford et al., 2016). Besides resonant frequency shifting from local f to the effective inertial frequency caused by mesoscale vorticity (Weller, 1982; 38 39 Kunze, 1985; Klein et al., 2003), energy transfer between eddy and NIWs also plays an important role 40 in oceanic energy cascade (Ferrari and Wunsch, 2009; Thomas, 2017). Researchers have stated that the 41 NIWs can extract energy from eddy and affect the vertical transport (Barkan et al., 2021; Esposito et al., 42 2023). Moreover, enhanced wave dissipation near the critical layer balances the energy transfer from 43 mean flows and conserve the near-inertial energy during eddy migration (Xu et al., 2022a). 44 Jing et al. (2017, 2018) suggested that permanent energy can be transferred from eddies to NIWs 45 under a positive Okubo-Weiss parameter condition. Furthermore, Yu et al. (2022) revealed that 46 enhanced near-inertial kinetic energy (NIKE) is found preferentially in regions of anticyclonic vorticity. 47 Using surface drifter dataset, Liu et al. (2023) indicated that bidirectional energy transfer exists 48 between eddy and NIWs in the global oceans. Above studies all emphasized role of eddy on affecting 49 frequencies of NIWs, NIKE as well. 50 As the largest semi-enclosed marginal sea in the northwestern Pacific Ocean, the South China Sea 51 (SCS) has frequent eddy activities (Wang et al., 2003; Wang et al., 2008; Chen et al., 2011; Nan et al., 52 2011; Chu et al., 2014). Using different eddy detection algorithms and criteria, many studies have 53 statistically investigated the eddy number and mean properties (Wang et al., 2003; Lin et al., 2007; Xiu 54 et al., 2010). Chen et al. (2011) suggest that eddies present 35%-60% of the time in the northern SCS, 55 which play an important role in material transport and energy transfer (Zhang et al., 2015; He et al., 56 2018; Zhang et al., 2019; Liu et al., 2023; Zhang et al., 2023). Researchers have examined eddy 57 properties (Wang et al., 2023; Zhao et al., 2023), eddy structures (Zhang et al., 2016; He et al., 2018; 58 Chu et al., 2022) and energy exchange during eddy process in the SCS (Chu et al., 2014; Huang et al., 59 2018; Xu et al., 2022b; Liu et al., 2023; Zhang et al., 2023; Fan et al., 2024). 60 In the northwestern SCS, large portion of eddy propagate westward and terminate near Xisha Trough (Fig. 1a; Wang et al., 2003; Zhai et al., 2010), making this place as a seemly area for 61

Wunsch, 2009; Alford et al., 2016). NIWs transfer energy from mixed layer to interior and ultimately

71


72 73

74

62 investigating NIWs and its interaction with eddy. However, interaction and energy exchange processes
63 between them remain to be investigated in this area. In this study, four moorings equipped with
64 Teledyne RD Acoustic Doppler Current Profiler (ADCP) instrument were deployed in the Xisha
65 Trough of the northwestern SCS (Fig. 1a). During spring 2022, a cyclonic eddy (CE) propagated
66 westward across the mooring array, giving an opportunity to study energy transfer between NIWs and
67 the CE in this area. We introduce data and methods in Section 2, present observing results in Section 3,
68 discuss energy transfer between NIWs and the CE in Section 4, and give a conclusion in Section 5.

Figure 1: (a) Location of four moorings (Q1-Q4) in the northwestern SCS. The shaded background color represents topography. Orange lines indicate tracks of long-lasting eddy propagating from the Luzon area to the Xisha Trough from 1993 to 2023. (b) Structure of up-looking ADCP mooring along the slope of topography. (c) The power spectra during eddy period (blue line) and whole observation period (black line). The spectra are averaged at above 200 m.

75 2 Methodology

76 **2.1 Data**

77 The four moorings (Q1-Q4) were deployed in the study area on August 21-23, 2021. One up-78 looking 75-kHz ADCP along with a CTD (SBE 37sm) was fixed at approximately 480 m depth and 79 continuously monitored current velocity for each mooring (Fig. 1b). The ADCPs were set to have 30 80 bins with 16 m of vertical interval and 30 minutes of temporal interval, enabling extraction of NIWs of 81 the upper ocean. The moorings were recovered on November 13-15, 2022. Several ADCP bins near 82 sea surface were omitted due to large fluctuations, and the remaining were linearly interpolated 83 vertically. Due to the significant vertical fluctuations based on CTD data in certain periods, flow 84 velocity compensation correction was applied to ADCP data, which was calculated based on depth 85 change and flow direction. 86 The Copernicus Marine Environment Monitoring Service (CMEMS) provides daily geostrophic current and sea level anomaly (SLA) data with a resolution of 0.25° × 0.25°, which were used to detect 87 88 eddy during the observing period. The 1/12° three-dimensional products were obtained from CMEMS to calculate energy transfer rate between eddy and NIWs. The SLA dataset from Archiving, Validation, 89 90 and Interpretation of Satellite Oceanographic (AVISO) was used to validate the existence of eddy and 91 provide trajectory of eddy's center. World Ocean Atlas (WOA18) data was used to extract temperature and salinity data. The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 92 93 V5 (ERA-5) data, which has hourly temporal and 0.25° spatial resolutions, was used to calculate near-94 inertial energy input from the wind field.

95 **2.2 Method**

Eddy-NIWs energy transfer rate ε can be qualitatively calculated as (Jing et al., 2017):

97
$$\varepsilon = -\left(\langle u_i u_i \rangle - \langle v_i v_i \rangle\right) \frac{s_n}{2} - \langle u_i v_i \rangle S_s , \qquad (1)$$

98 where $S_n = \frac{\partial u_g}{\partial x} - \frac{\partial v_g}{\partial y}$ and $S_s = \frac{\partial u_g}{\partial y} + \frac{\partial v_g}{\partial x}$ are the normal strain and shear strain of the geostrophic

velocity u_g and v_g , which is obtained from the reanalysis data (Chen et al., 2023). We used fourth-

 $100 \hspace{0.5cm} \text{order Butterworth band-pass filter with the cutoff frequency } (0.8 \text{f-} 1.2 \text{f}) \hspace{0.5cm} \text{to separate near-inertial velocity}$

101 u_i and v_i . The $\langle \cdot \rangle$ represents a moving average of 3 internal tide periods.

Near-inertial wind work was estimated as (Dasaro, 1985; Alford, 2001):

$$103 W = \vec{\tau} \cdot \vec{u}_i, (2)$$

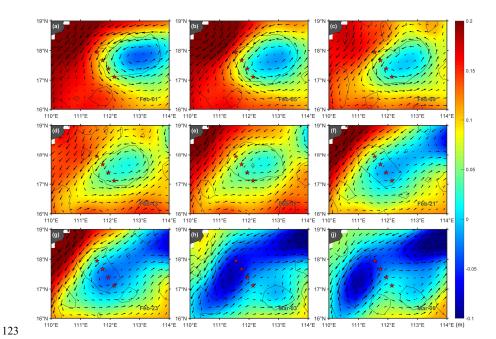
- 104 where \vec{u}_i is near-inertial velocity at sea surface and $\vec{\tau}$ is wind stress calculated as (Liu et al., 2019;
- 105 Alford, 2020):

$$106 \quad \vec{\tau} = \rho_a C_D |\vec{U}_{10} - \vec{u}_c| (\vec{U}_{10} - \vec{u}_c) \,, \tag{3}$$

- where ρ_a =1.3kg/m³ is density of air, \vec{U}_{10} is 10-m wind velocity vector, \vec{u}_c is ocean current vector, C_D is
- 108 drag coefficient (Oey et al., 2006).
- We used the Okubo-Weiss parameter (OW) (Provenzale, 1999) method to detect the CE. The OW
- 110 method was computed from the horizontal velocity field as follows:

111
$$\sigma = S_{\rm sh}^2 + S_{\rm st}^2 - \zeta^2$$
, (4)

where $S_{\rm sh}$ and $S_{\rm st}$ are the shear and strain deformation, respectively, and ζ is the relative vorticity.


113 **3 Results**

114 3.1 Near inertial frequency and NIKE

- The snapshots of SLA and surface geostrophic velocity fields show that the CE approached the
- 116 mooring array on February 1 (Fig. 2). Its center passed through Q3 around February 26 and it left the
- 117 mooring array on March 9. During the whole observation period, NIWs have a small blue shift of near-
- inertial frequency with peak value of 0.616 cpd (Fig. 1c). While a significant blue shift appeared during
- eddy period (February 1 March 9) due to the background positive vorticity of the CE. The peak of
- 120 spectral frequency (ω_p) reached 0.667cpd, with a relative frequency shift ($\frac{\omega_p f}{f}$, RFS) of about 10.8%
- in this area. It is significantly larger than the global RFS (Guo et al., 2021), suggesting significant
- impact of the CE on local near-inertial frequencies.

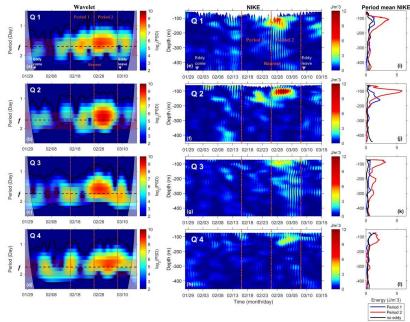


Figure 2: (a-j) The snapshot of sea level anomaly and geostrophic current vector during February 1-March 9. The black line indicates the Okubo-Weiss parameters.

Meridional velocity wavelet power spectra show that strong power of NIWs occurred during eddy period but with large variations at different eddy stages (Figs. 3a-d). To qualify NIKE at different stages of the CE, we defined two time periods named as Period1 (February 16-26) and Period2 (February 26-March 8), covering 10 days before and after the eddy's center passed through the mooring array. In addition, no eddy period with calm wind during June 1-20 was chosen for extra comparison. Figs. 3e-h show temporal and vertical variations of NIKE at the four moorings during eddy period. The absences of NIKE at surface layers are due to mooring swing caused by strong currents. It can be seen that NIKEs were enhanced largely at above 200 m during Period2. And peak values of NIKE concentrated at around 100 m. The time-averaged NIKEs during Period2 have almost one order larger than that during no eddy period (Figs. 3i-l), suggesting significant impact of the CE on local NIKE. Moreover, NIKEs illustrate asymmetry in spatial during eddy period (Figs. 3e-l). At north side of the CE (Q1-Q2), NIKEs became much stronger than that at south side of the CE (Q3 and Q4), especially at Q2 with a maximum value up to 12.0 J/m³ (Fig. 3f), which has the same magnitude as the result observed by Xu et al. (2022a).

Figure 3: (a-d) 100 m-depth meridional velocity wavelet power spectra at Q1-Q4 during eddy period. **(e-h)** Vertical distribution of NIKE at Q1-Q4. The gray triangles indicate the time when the CE edge contacts and leaves the mooring array. **(i-l)** Vertical distribution of time-averaged NIKE during 'no eddy period' (black line), 'Period 1' (blue line), and 'Period 2' (red line) at Q1-Q4. The red dashed lines mark two periods of the CE.

3.2 Impact of eddy on NIWs

To ensure the fact that the CE could largely enhance NIWs in the northwestern SCS, we compared time series of vertical-integrated (above 200m) NIKE at each mooring with mooring-eddy distance, wind-input NIKE and eddy kinetic energy (EKE) in the study area (Fig. 4 and Fig. 5). NIWs were enhanced gradually accompanied by weakening EKE during Period1 when wind-input NIKE were relatively stable and minor. Results suggest a vivid energy transfer from eddy to NIWs during this period that will be qualified and discussed in Section 4. After passing of the CE's center, the CE enhanced NIWs faster, indicating more energy transfer from eddy to NIWs during Period2 than that during Period1. The slight increase of EKE during Period2 was contributed by background western boundary current velocity input (Fig. 1a).

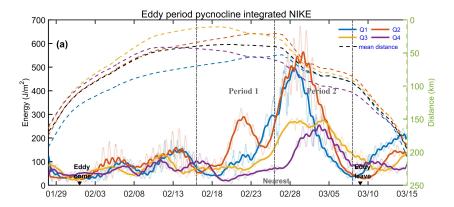
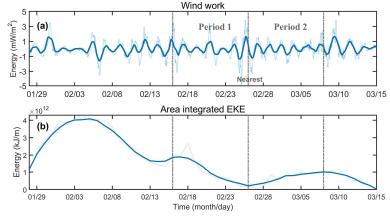
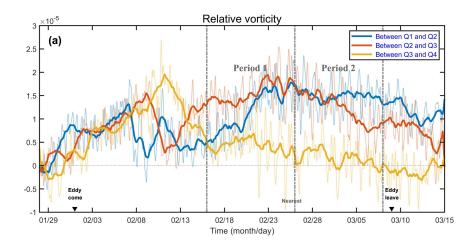



Figure 4: Time series of raw (thin lines) and daily-smoothed (thick lines) depth-integrated (above 200 m) NIKE at Q1-Q4 (solid lines) accompanying with distance between the CE's center and each mooring (dashed lines) during eddy period. The black dashed line represents the mean distance between the CE's center and four moorings. The triangles mark the time when the eddy edge contacts and leaves the mooring array.


Figure 5: (a) Time series of raw (thin lines) and daily-smoothed (thick lines) averaged wind-input NIKE at Q1-Q4. **(b)** Time series of raw (thin lines) and daily-smoothed (thick lines) area integrated EKE.

In spatial, intensity of NIWs reached 600 J/ m² at Q2, while they merely had 300 J/m² at Q3 and Q4 due to vorticity asymmetry of the CE in which relative vorticities at north side (between Q1 and Q2) were much larger than those at south side (between Q3 and Q4) (Fig. 6). Zhao et al. (2021, 2023) pointed out that NIWs generation is significantly influenced by the eddy structure in which eddy with stronger shears tend to generate more powerful NIWs. In our case, the north side of the CE was merged with the western boundary current of the northwestern SCS (Fig. 1a) that generated strong shear and

171 enhanced NIWs largely at this side.

Figure 6: Time series of raw (thin lines) and daily-smoothed (thick lines) relative vorticity among four moorings. Vertical gray dashed lines mark two periods of the CE.

3.3 Impact of eddy on near-inertial modes

The CE not only affected frequency and energy of NIWs, but also their modes in the study area. Here, we calculated vertical-averaged energy (above 200 m) of the first five modes of near-inertial velocity during eddy period (Figs. 7a-d). All five modes grew since Period1 and reached peak values at Period2. But the CE has different influence on different modes with low modes (mainly the second and third modes) being significantly enhanced, especially near the CE's center. Low modes rose from 46% (Q2) and 54.4% (Q3) during Period1 to 87.6% (Q2) and 79.5% (Q3) during Period2, respectively (Figs 7e-f). The first mode has longer vertical wavelength and propagates faster than other modes that make it easy escape from eddy's influence (Chen et al., 2013). Overall, energy proportion of the first five modes were promoted from 81.5%, 66.8%, 69%, and 78.5% during Period1 to 90.8%, 88.8%, 87.7%, 94% at Q1-Q4, respectively (Figs. 7e-f), suggesting prominent influence of eddy on near-inertial modes in the northwestern SCS.

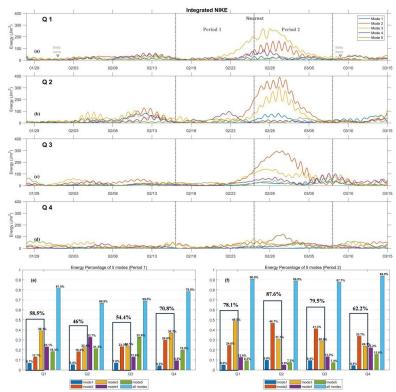


Figure 7: (a-d) Time series of NIKE for the first five modes at Q1-Q4 during eddy period. (e-f) The time-averaged proportions of each mode and all five modes during period 1 and period 2 at Q1-Q4. Black border indicates proportion sum of the first three modes.

4 Discussion

Energy exchange between eddy and NIWs is one of the most important processes in oceanic energy cascade (Ferrari and Wunsch, 2009; Alford et al., 2016; Thomas, 2017). By simulations, Jing et al. (2017) found that eddy-NIWs energy transfer efficiency is about 2% in Kuroshio Extension region. Based on surface drifter dataset, Liu et al. (2023) stated that energy transfer efficiency can reach about 13%, indicating previous underestimation of eddy impact on NIWs. For obtaining precise result, direct ocean current measurement by long-term mooring is essential (Jing et al., 2018). In this section, eddy-NIWs energy transfer rate during eddy period in the study area was qualified and discussed (Fig. 8). Corresponding to the layer of NIKE enhancement (Fig. 3), large energy transfer rates occurred at above 200 m with the peak values at around 100 m during eddy period, rather than surface and mixing layers (Jing et al., 2017; Liu et al., 2023). Both positive and negative transfer rates can reach a magnitude of 6

×10⁻¹⁰ m²/s³ in the study area, in which they are several times larger than the result of Jing et al. (2018), but they are smaller than Chen et al. (2023)'s result. The differences may be attributed to the strength of eddies, their rotation direction and the intensity of NIWs. In addition, eddy-NIWs energy transfer is largely dependent on eddy structure in which high rate can be caused by strong eddy shear (Zhao et al., 2023). It can be found that energy transfer at the CE's edge (Q1 and Q4) were more active than that at the CE's center (Q3). Although NIWs at Q4 were relative weak, the strong strains of the low frequency flow promoted local transfer rates at this area (Figs. 9a-b). Thomas and Daniel (2020) and Li et al. (2022) both stated that NIWS draw energy from background flow with small energy ratio between them, vice versa. Similarly, our results show that positive/negative energy transfers from the CE to NIWs dominated 'Before Strongest'/'After Strongest' periods at most mooring stations (Fig. 9c), indicating an inhomogeneous and bidirectional energy transfer between eddy and NIWs during different periods in the northwestern SCS.

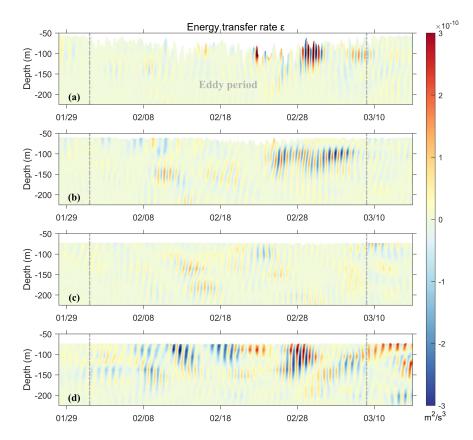
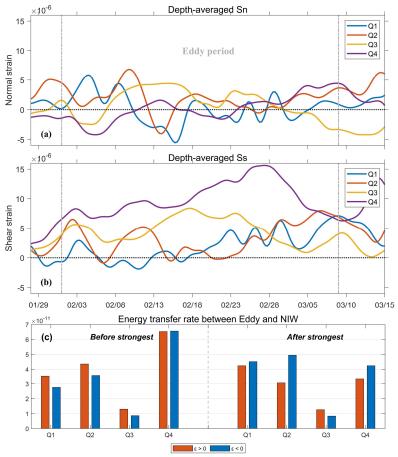



Figure 8: (a-d) Vertical distribution of energy transfer rate between the CE and NIWs at Q1-Q4 during eddy period.

Figure 9: (a) Time series of depth-averaged (above 200 m) normal strain of the CE for each mooring. (b) Time-series of depth-averaged (above 200 m) shear strain of the CE for each mooring. (c) Time- (7 days) and depth-averaged (above 200 m) positive and negative energy transfer rates before and after the NIKE reaching its peak at Q1-Q4.

5 Conclusion

During spring 2022, the CE passed through the northwestern SCS. Our four long-term moorings with ADCP instruments captured the interaction and energy exchange processes between eddy and local NIWs for the first time in this area. We found that NIWs can be largely enhanced by the passing CE. Horizontally, the CE transferred more energy to NIWs at the north side than that at the south side

228 of the CE due to asymmetry of eddy structure and strong shear. In vertical, the enhancement of NIKE 229 occurred at above 200 m, with a maximum exceeding 12 J/m³ at a depth of 100 m. Power comparison 230 of different NIWs modes during eddy period indicate that the CE promoted percentage of first five 231 modes, especially the second and third modes. Overall, NIWs drew energy from the CE during the 232 enhancing period of NIKE, while they gave energy back to the CE during weakening period of NIKE. 233 This study is helpful for us to understand multi-scale interaction and energy cascade in the 234 northwestern SCS. **CMEMS** 235 Data availability. The products available at https://data.marine.copernicus.eu/product/GLOBAL MULTIYEAR_PHY_001_030/services. 236 The 237 ERA-5 wind data are available at https://doi.org/10.24381/cds.adbb2d47. The WOA2018 238 climatological monthly mixed layer depth data available 239 https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/. The AVISO eddy data are available at 240 https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscale-eddy-241 trajectory-product.html. The bathymetric data is from GEBCO Gridded Bathymetry Data 242 (https://download.gebco.net). The mooring dataset used for plotting Figure for this paper are available 243 at: https://10.5281/zenodo.14638959. 244 245 Author Contribution. H.Z.X. and B.H. conceived the central idea. Q.A.C. and H.Z.X. conducted most 246 of the analyses and generated the Figures. Q.A.C., B.H. and H.Z.X. wrote the main manuscript. D.X.W, 247 C.L.L, Z.Y.Z., H.C.J. contributed to the revision of the manuscript. H.Z.X., Z.Y.Z., H.C.J., W.S., T.L., 248 L.W, S.M.L. and R.JC. conducted observations of the Mooring Array and participated in data analysis. 249 250 Competing interests. The contact author has declared that none of the authors has any competing 251 interests. 252 Acknowledgments. This research is supported by Hainan Provincial Natural Science Foundation of 253 China (Grant No. 423RC547), the National Natural Science Foundation of China (Grant No. 42376023, 42176033), the Natural Science Foundation of Guangdong Province (Grant No. 2024A1515012218 and 254 2022A1515011736), the Innovational Fund for Scientific and Technological Personnel of Hainan 255 256 Province (Grant No. KJRC2023D39), and the Youth Innovation Promotion Association CAS (Grant No. 257 2022373).

258 References

- 259 Alford, M. H.: Internal Swell Generation: The Spatial Distribution of Energy Flux from the Wind to
- 260 Mixed Layer Near-Inertial Motions, Journal of Physical Oceanography, 31, 2359-2368, 2001.
- 261 Alford, M. H.: Redistribution of energy available for ocean mixing by long-range propagation of
- 262 internal waves, Nature, 423, 159-162, 2003.
- 263 Alford, M. H.: Revisiting Near-Inertial Wind Work: Slab Models, Relative Stress, and Mixed Layer
- Deepening, Journal of Physical Oceanography, 50, 3141-3156, 2020.
- 265 Alford, M. H., MacKinnon, J. A., Simmons, H. L., and Nash, J. D.: Near-Inertial Internal Gravity
- Waves in the Ocean, Annual Review of Marine Science, 8, 95-123, 2016.
- 267 Barkan, R., Srinivasan, K., Yang, L., McWilliams, J. C., Gula, J., and Vic, C.: Oceanic Mesoscale Eddy
- Depletion Catalyzed by Internal Waves, Geophysical Research Letters, 48, e2021GL094376, 2021.
- 269 Chen, G., Hou, Y., and Chu, X.: Mesoscale eddies in the South China Sea: Mean properties,
- spatiotemporal variability, and impact on thermohaline structure, Journal of Geophysical Research,
- 271 116, 2011.
- 272 Chen, G., Xue, H., Wang, D., and Xie, Q.: Observed near-inertial kinetic energy in the northwestern
- South China Sea, Journal of Geophysical Research: Oceans, 118, 4965-4977, 2013.
- 274 Chen, S., Chen, D., and Xing, J.: A study on some basic features of inertial oscillations and near-inertial
- 275 internal waves, Ocean Sci., 13, 829-836, 2017.
- Chen, Z., Yu, F., Chen, Z., Wang, J., Nan, F., Ren, Q., Hu, Y., Cao, A., and Zheng, T.: Downward
- 277 Propagation and Trapping of Near-Inertial Waves by a Westward-Moving Anticyclonic Eddy in the
- 278 Subtropical Northwestern Pacific Ocean, Journal of Physical Oceanography, 53, 2105-2120, 2023.
- 279 Chu, F., Si, Z., Yan, X., Liu, Z., Yu, J., and Pang, C.: Physical structure and evolution of a cyclonic
- 280 eddy in the Northern South China sea, Deep Sea Research Part I: Oceanographic Research Papers,
- 281 189, 2022.
- 282 Chu, X., Xue, H., Qi, Y., Chen, G., Mao, Q., Wang, D., and Chai, F.: An exceptional anticyclonic eddy
- in the South China Sea in 2010, Journal of Geophysical Research: Oceans, 119, 881-897, 2014.
- 284 Dasaro, E. A.: The Energy Flux from the Wind to near-Inertial Motions in the Surface Mixed Layer,
- 285 Journal of Physical Oceanography, 15, 1043-1059, 1985.
- 286 Esposito, G., Donnet, S., Berta, M., Shcherbina, A. Y., Freilich, M., Centurioni, L., D'Asaro, E. A.,
- Farrar, J. T., Johnston, T. M. S., Mahadevan, A., Özgökmen, T., Pascual, A., Poulain, P.-M., Ruiz, S.,
- 288 Tarry, D. R., and Griffa, A.: Inertial Oscillations and Frontal Processes in an Alboran Sea Jet: Effects
- on Divergence and Vertical Transport, Journal of Geophysical Research: Oceans, 128,
- 290 e2022JC019004, 2023.
- 291 Fan, L., Sun, H., Yang, Q., and Li, J.: Numerical investigation of interaction between anticyclonic eddy
- and semidiurnal internal tide in the northeastern South China Sea, Ocean Science, 20, 241-264, 2024.
- 293 Ferrari, R. and Wunsch, C.: Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks, Annual
- 294 Review of Fluid Mechanics, 41, 253-282, 2009.
- 295 Garrett, C.: What is the "near-inertial" band and why is it different from the rest of the internal wave
- spectrum?, Journal of Physical Oceanography, 31, 962-971, 2001.
- 297 Guo, M., Chen, R., Xu, H., and Vetter, P. A.: Dynamical features of near-inertial motions in global
- ocean based on the GDP dataset from 2000 to 2019, Acta Oceanologica Sinica, 40, 126-134, 2021.
- 299 He, Q., Zhan, H., Cai, S., He, Y., Huang, G., and Zhan, W.: A New Assessment of Mesoscale Eddies in
- 300 the South China Sea: Surface Features, Three-Dimensional Structures, and Thermohaline Transports,
- Journal of Geophysical Research: Oceans, 123, 4906-4929, 2018.

- 302 Huang, X., Wang, Z., Zhang, Z., Yang, Y., Zhou, C., Yang, Q., Zhao, W., and Tian, J.: Role of
- 303 Mesoscale Eddies in Modulating the Semidiurnal Internal Tide: Observation Results in the Northern
- 304 South China Sea, Journal of Physical Oceanography, 48, 1749-1770, 2018.
- 305 Jing, Z., Chang, P., DiMarco, S. F., and Wu, L.: Observed Energy Exchange between Low-Frequency
- Flows and Internal Waves in the Gulf of Mexico, Journal of Physical Oceanography, 48, 995-1008,
- 307 2018.
- 308 Jing, Z., Wu, L., and Ma, X.: Energy Exchange between the Mesoscale Oceanic Eddies and Wind-
- Forced Near-Inertial Oscillations, Journal of Physical Oceanography, 47, 721-733, 2017.
- 310 Klein, P., Hua, B. L., and Carton, X.: Emergence of cyclonic structures due to the interaction between
- 311 near-inertial oscillations and mesoscale eddies, Quarterly Journal of the Royal Meteorological
- 312 Society, 129, 2513-2525, 2003.
- 313 Kunze, E.: Near-Inertial Wave Propagation In Geostrophic Shear, Journal of Physical Oceanography,
- 314 15, 544-565, 1985.
- 315 Li, Q., Chen, Z., Guan, S., Yang, H., Jing, Z., Liu, Y., Sun, B., and Wu, L.: Enhanced Near-Inertial
- 316 Waves and Turbulent Diapycnal Mixing Observed in a Cold- and Warm-Core Eddy in the Kuroshio
- Extension Region, Journal of Physical Oceanography, 52, 1849-1866, 2022.
- Lin, P., Fang, W., Chen, Y., and Tang, X.: Temporal and spatial variation characteristics on eddies in the
- 319 South China Sea I. Statistical analyses, Acta Oceanologica Sinica, 29, 14-22, 2007.
- 320 Liu, G., Chen, Z., Lu, H., Liu, Z., Zhang, Q., He, Q., He, Y., Xu, J., Gong, Y., and Cai, S.: Energy
- Transfer Between Mesoscale Eddies and Near-Inertial Waves From Surface Drifter Observations,
- 322 Geophysical Research Letters, 50, 2023.
- 323 Liu, Y., Jing, Z., and Wu, L.: Wind Power on Oceanic Near-Inertial Oscillations in the Global Ocean
- Estimated From Surface Drifters, Geophysical Research Letters, 46, 2647-2653, 2019.
- 325 Nan, F., Xue, H., Xiu, P., Chai, F., Shi, M., and Guo, P.: Oceanic eddy formation and propagation
- 326 southwest of Taiwan, Journal of Geophysical Research: Oceans, 116, 2011.
- 327 Oey, L. Y., Ezer, T., Wang, D. P., Fan, S. J., and Yin, X. Q.: Loop Current warming by Hurricane Wilma,
- 328 Geophysical Research Letters, 33, 2006.
- Provenzale, A.: Transport by Coherent Barotropic Vortices, Annual Review of Fluid Mechanics, 31, 55-
- 330 93, 1999.
- 331 Thomas, J. and Daniel, D.: Turbulent exchanges between near-inertial waves and balanced flows,
- Journal of Fluid Mechanics, 902, 2020.
- 333 Thomas, L. N.: On the modifications of near-inertial waves at fronts: implications for energy transfer
- 334 across scales, Ocean Dynamics, 67, 1335-1350, 2017.
- 335 Wang, G., Chen, D., and Su, J.: Winter Eddy Genesis in the Eastern South China Sea due to Orographic
- Wind Jets, Journal of Physical Oceanography, 38, 726-732, 2008.
- 337 Wang, G., Su, J., and Chu, P. C.: Mesoscale eddies in the South China Sea observed with altimeter data,
- 338 Geophysical Research Letters, 30, 2003.
- 339 Wang, X., Du, Y., Zhang, Y., Wang, T., Wang, M., and Jing, Z.: Subsurface Anticyclonic Eddy
- 340 Transited from Kuroshio Shedding Eddy in the Northern South China Sea, Journal of Physical
- 341 Oceanography, 53, 841-861, 2023.
- 342 Weller, R. A.: The Relation of Near-Inertial Motions Observed in the Mixed layer During the JASIN
- 343 (1978) Experiment to the Local Wind Stress and to the Quasi-Geostrophic Flow Field, Journal of
- 344 Physical Oceanography, 12, 1122-1136, 1982.
- 345 Xiu, P., Chai, F., Shi, L., Xue, H., and Chao, Y.: A census of eddy activities in the South China Sea

https://doi.org/10.5194/egusphere-2025-283 Preprint. Discussion started: 13 February 2025 © Author(s) 2025. CC BY 4.0 License.

- during 1993–2007, Journal of Geophysical Research: Oceans, 115, 2010.
- 347 Xu, H., Zhang, Z., Vetter, P. A., Xie, Q., Long, T., and Hong, B.: Impact of Anticyclonic Eddy on
- Nonlinear Wave Wave Interaction in the Southern South China Sea During Late Summer 2020,
- 349 Geophysical Research Letters, 49, 2022b.
- 350 Xu, X., Zhao, W., Huang, X., Hu, Q., Guan, S., Zhou, C., and Tian, J.: Observed Near-Inertial Waves
- 351 Trapped in a Propagating Anticyclonic Eddy, Journal of Physical Oceanography, 52, 2029-2047,
- 352 2022b
- 353 Yu, X., Naveira Garabato, A. C., Vic, C., Gula, J., Savage, A. C., Wang, J., Waterhouse, A. F., and
- 354 MacKinnon, J. A.: Observed Equatorward Propagation and Chimney Effect of Near-Inertial Waves
- in the Midlatitude Ocean, Geophysical Research Letters, 49, 2022.
- 356 Zhai, X., Johnson, H. L., and Marshall, D. P.: Significant sink of ocean-eddy energy near western
- boundaries, Nature Geoscience, 3, 608-612, 2010.
- 358 Zhang, W. Z., Xue, H., Chai, F., and Ni, Q.: Dynamical processes within an anticyclonic eddy revealed
- from Argo floats, Geophysical Research Letters, 42, 2342-2350, 2015.
- 360 Zhang, Z., Liu, Y., Qiu, B., Luo, Y., Cai, W., Yuan, Q., Liu, Y., Zhang, H., Liu, H., Miao, M., Zhang, J.,
- 361 Zhao, W., and Tian, J.: Submesoscale inverse energy cascade enhances Southern Ocean eddy heat
- transport, Nature Communications, 14, 2023.
- 363 Zhang, Z., Liu, Z., Richards, K., Shang, G., Zhao, W., Tian, J., Huang, X., and Zhou, C.: Elevated
- 364 Diapycnal Mixing by a Subthermocline Eddy in the Western Equatorial Pacific, Geophysical
- 365 Research Letters, 46, 2628-2636, 2019.
- 366 Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., and Wan, X.: Observed 3D Structure,
- 367 Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea, Scientific Reports,
- 368 6, 2016.
- 369 Zhao, B., Liu, Z., Xu, Z., Yin, B., and Zheng, Q.: Spontaneous near-inertial wave generation from
- 370 mesoscale eddy: Nonlinear forcing mechanism, Physics of Fluids, 35, 2023.
- 371 Zhao, B., Xu, Z., Li, Q., Min, W., Wang, Y., and Yin, B.: The characteristics of spontaneous near-
- 372 inertial wave generation from an anticyclonic mesoscale eddy, Journal of Oceanology and
- 373 Limnology, 40, 413-427, 2021.

374