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18  Abstract. By analyzing dataset derived from four moorings during spring 2022, this study provides
19  direct evidence that near-inertial waves (NIWs) can be largely enhanced by a passing cyclonic eddy
20 (CE) in the northwestern South China Sea. Results show that the enhancement of NIWs mainly
21 occurred at north side of the CE due to asymmetry of eddy structure. In vertical, the enhancement
22 concentrated at above 200 m and reached peaks at around 100 m. Significant energy transfer rates
23 between the CE and NIWs appeared at the same depth of the enhancement that can reach up to 6x10°'°
24 m?s’ at the CE’s edge. Under impact of the CE, power of the first five NIWs modes were promoted
25  significantly and dominated by the second and third modes. Overall, the CE transferred energy to
26 NIWs before near-inertial kinetic energy reaching its peaks, while NIWs gave energy back to the CE

27  after the peaks.

28 1 Introduction

29 Near-inertial waves (NIWs) are ubiquitous features throughout the global ocean with frequencies
30 near the Coriolis frequency f (Garrett, 2001). As dominant modes of high-frequency variability in

31  oceans, they contain half of the kinetic energy in internal wave fields (Alford, 2003; Ferrari and
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32 Wunsch, 2009; Alford et al., 2016). NIWs transfer energy from mixed layer to interior and ultimately
33  dissipate into microscale turbulent mixing, providing an energy source for abyssal diapycnal mixing
34  (Ferrari and Wunsch, 2009; Chen et al., 2017). Therefore, NIWs are of vital importance for energy
35  cascade among multiscale dynamic processes.

36 Due to horizontal spatial scales of 10-100 km and slow group speed of NIWs, they are likely to
37 interact strongly with mesoscale eddy in oceans (Alford et al., 2016). Besides resonant frequency
38  shifting from local fto the effective inertial frequency caused by mesoscale vorticity (Weller, 1982;
39  Kunze, 1985; Klein et al., 2003), energy transfer between eddy and NIWs also plays an important role
40  in oceanic energy cascade (Ferrari and Wunsch, 2009; Thomas, 2017). Researchers have stated that the
41  NIWs can extract energy from eddy and affect the vertical transport (Barkan et al., 2021; Esposito et al.,
42 2023). Moreover, enhanced wave dissipation near the critical layer balances the energy transfer from
43 mean flows and conserve the near-inertial energy during eddy migration (Xu et al., 2022a).

44 Jing et al. (2017, 2018) suggested that permanent energy can be transferred from eddies to NIWs
45 under a positive Okubo—Weiss parameter condition. Furthermore, Yu et al. (2022) revealed that
46  enhanced near-inertial kinetic energy (NIKE) is found preferentially in regions of anticyclonic vorticity.
47 Using surface drifter dataset, Liu et al. (2023) indicated that bidirectional energy transfer exists
48  between eddy and NIWs in the global oceans. Above studies all emphasized role of eddy on affecting
49  frequencies of NIWs, NIKE as well.

50 As the largest semi-enclosed marginal sea in the northwestern Pacific Ocean, the South China Sea
51  (SCS) has frequent eddy activities (Wang et al., 2003; Wang et al., 2008; Chen et al., 2011; Nan et al.,
52 2011; Chu et al., 2014). Using different eddy detection algorithms and criteria, many studies have
53 statistically investigated the eddy number and mean properties (Wang et al., 2003; Lin et al., 2007; Xiu
54 etal, 2010). Chen et al. (2011) suggest that eddies present 35%—60% of the time in the northern SCS,
55  which play an important role in material transport and energy transfer (Zhang et al., 2015; He et al.,
56  2018; Zhang et al., 2019; Liu et al., 2023; Zhang et al., 2023). Researchers have examined eddy
57  properties (Wang et al., 2023; Zhao et al., 2023), eddy structures (Zhang et al., 2016; He et al., 2018;
58  Chu et al., 2022) and energy exchange during eddy process in the SCS (Chu et al., 2014; Huang et al.,
59  2018; Xu et al., 2022b; Liu et al., 2023; Zhang et al., 2023; Fan et al., 2024).

60 In the northwestern SCS, large portion of eddy propagate westward and terminate near Xisha

61 Trough (Fig. la; Wang et al., 2003; Zhai et al., 2010), making this place as a seemly area for
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investigating NIWs and its interaction with eddy. However, interaction and energy exchange processes
between them remain to be investigated in this area. In this study, four moorings equipped with
Teledyne RD Acoustic Doppler Current Profiler (ADCP) instrument were deployed in the Xisha
Trough of the northwestern SCS (Fig. la). During spring 2022, a cyclonic eddy (CE) propagated
westward across the mooring array, giving an opportunity to study energy transfer between NIWs and
the CE in this area. We introduce data and methods in Section 2, present observing results in Section 3,

discuss energy transfer between NIWs and the CE in Section 4, and give a conclusion in Section 5.
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Figure 1: (a) Location of four moorings (Q1-Q4) in the northwestern SCS. The shaded background color
represents topography. Orange lines indicate tracks of long-lasting eddy propagating from the Luzon area to the
Xisha Trough from 1993 to 2023. (b) Structure of up-looking ADCP mooring along the slope of topography. (c)
The power spectra during eddy period (blue line) and whole observation period (black line). The spectra are

averaged at above 200 m.
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75 2 Methodology

76 2.1 Data

77 The four moorings (Q1-Q4) were deployed in the study area on August 21-23, 2021. One up-
78  looking 75-kHz ADCP along with a CTD (SBE 37sm) was fixed at approximately 480 m depth and
79  continuously monitored current velocity for each mooring (Fig. 1b). The ADCPs were set to have 30
80  bins with 16 m of vertical interval and 30 minutes of temporal interval, enabling extraction of NIWs of
81  the upper ocean. The moorings were recovered on November 13-15, 2022. Several ADCP bins near
82 sea surface were omitted due to large fluctuations, and the remaining were linearly interpolated
83  wvertically. Due to the significant vertical fluctuations based on CTD data in certain periods, flow
84  velocity compensation correction was applied to ADCP data, which was calculated based on depth
85  change and flow direction.

86 The Copernicus Marine Environment Monitoring Service (CMEMS) provides daily geostrophic
87  current and sea level anomaly (SLA) data with a resolution of 0.25° x 0.25°, which were used to detect
88  eddy during the observing period. The 1/12° three-dimensional products were obtained from CMEMS
89  to calculate energy transfer rate between eddy and NIWs. The SLA dataset from Archiving, Validation,
90 and Interpretation of Satellite Oceanographic (AVISO) was used to validate the existence of eddy and
91 provide trajectory of eddy’s center. World Ocean Atlas (WOA18) data was used to extract temperature
92 and salinity data. The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis
93 V5 (ERA-5) data, which has hourly temporal and 0.25° spatial resolutions, was used to calculate near-

94 inertial energy input from the wind field.

95 2.2 Method

96 Eddy-NIWs energy transfer rate € can be qualitatively calculated as (Jing et al., 2017):
Sn
97 &=—({uw;)— (vivi»?_ (wvy)Ss s (1
Jug _ v

o a . . .
98 where S, = and S; = HL;-F% are the normal strain and shear strain of the geostrophic

dax ay

99  velocity u, and vy, which is obtained from the reanalysis data (Chen et al., 2023). We used fourth-
100  order Butterworth band-pass filter with the cutoff frequency (0.8f-1.2f) to separate near-inertial velocity

101 w; and v;. The (-) represents a moving average of 3 internal tide periods.
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102 Near-inertial wind work was estimated as (Dasaro, 1985; Alford, 2001):

103 wW=7-u, 2
104  where %; is near-inertial velocity at sea surface and 7 is wind stress calculated as (Liu et al., 2019;
105  Alford, 2020):

106 7= paCp|Uso — | (T1o — ), 3)
107 where p,=1.3kg/m? is density of air, U1o is 10-m wind velocity vector, U, is ocean current vector, Cp, is
108  drag coefficient (Oey et al., 2006).

109 We used the Okubo-Weiss parameter (OW) (Provenzale, 1999) method to detect the CE. The OW
110 method was computed from the horizontal velocity field as follows:

111 o=S% +S%4-¢%, )

112 where Sy, and Sy, are the shear and strain deformation, respectively, and { is the relative vorticity.

113 3 Results

114 3.1 Near inertial frequency and NIKE

115 The snapshots of SLA and surface geostrophic velocity fields show that the CE approached the
116  mooring array on February 1 (Fig. 2). Its center passed through Q3 around February 26 and it left the
117  mooring array on March 9. During the whole observation period, NIWs have a small blue shift of near-
118  inertial frequency with peak value of 0.616 cpd (Fig. 1c). While a significant blue shift appeared during

119  eddy period (February 1 - March 9) due to the background positive vorticity of the CE. The peak of

120 spectral frequency (w,,) reached 0.667cpd, with a relative frequency shift (wp f_f, RFS) of about 10.8%

121  inthis area. It is significantly larger than the global RFS (Guo et al., 2021), suggesting significant

122 impact of the CE on local near-inertial frequencies.
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124 Figure 2: (a-j) The snapshot of sea level anomaly and geostrophic current vector during February 1-March 9. The
125  black line indicates the Okubo-Weiss parameters.

126 Meridional velocity wavelet power spectra show that strong power of NIWs occurred during eddy
127  period but with large variations at different eddy stages (Figs. 3a-d). To qualify NIKE at different
128  stages of the CE, we defined two time periods named as Periodl (February 16-26) and Period2
129 (February 26-March 8), covering 10 days before and after the eddy’s center passed through the
130 mooring array. In addition, no eddy period with calm wind during June 1-20 was chosen for extra
131  comparison. Figs. 3e-h show temporal and vertical variations of NIKE at the four moorings during
132 eddy period. The absences of NIKE at surface layers are due to mooring swing caused by strong
133 currents. It can be seen that NIKEs were enhanced largely at above 200 m during Period2. And peak
134 values of NIKE concentrated at around 100 m. The time-averaged NIKEs during Period2 have almost
135  one order larger than that during no eddy period (Figs. 3i-1), suggesting significant impact of the CE on
136  local NIKE. Moreover, NIKEs illustrate asymmetry in spatial during eddy period (Figs. 3e-1). At north
137  side of the CE (Q1-Q2), NIKEs became much stronger than that at south side of the CE (Q3 and Q4),
138  especially at Q2 with a maximum value up to 12.0 J/m? (Fig. 3f), which has the same magnitude as the

139  result observed by Xu et al. (2022a).
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141  Figure 3: (a-d) 100 m-depth meridional velocity wavelet power spectra at Q1-Q4 during eddy period. (e-h)

142 Vertical distribution of NIKE at Q1-Q4. The gray triangles indicate the time when the CE edge contacts and leaves
143 the mooring array. (i-1) Vertical distribution of time-averaged NIKE during ‘no eddy period’ (black line), ‘Period 1’
144 (blue line), and ‘Period 2’ (red line) at Q1-Q4. The red dashed lines mark two periods of the CE.

145 3.2 Impact of eddy on NIWs

146 To ensure the fact that the CE could largely enhance NIWs in the northwestern SCS, we compared
147  time series of vertical-integrated (above 200m) NIKE at each mooring with mooring-eddy distance,
148  wind-input NIKE and eddy kinetic energy (EKE) in the study area (Fig. 4 and Fig. 5). NIWs were
149  enhanced gradually accompanied by weakening EKE during Periodl when wind-input NIKE were
150  relatively stable and minor. Results suggest a vivid energy transfer from eddy to NIWs during this
151  period that will be qualified and discussed in Section 4. After passing of the CE’s center, the CE
152 enhanced NIWs faster, indicating more energy transfer from eddy to NIWs during Period2 than that
153 during Periodl. The slight increase of EKE during Period2 was contributed by background western

154  boundary current velocity input (Fig. 1a).
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Figure 4: Time series of raw (thin lines) and daily-smoothed (thick lines) depth-integrated (above 200 m) NIKE at
Q1-Q4 (solid lines) accompanying with distance between the CE’s center and each mooring (dashed lines) during
eddy period. The black dashed line represents the mean distance between the CE’s center and four moorings. The

triangles mark the time when the eddy edge contacts and leaves the mooring array.
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Figure 5: (a) Time series of raw (thin lines) and daily-smoothed (thick lines) averaged wind-input NIKE at Q1-Q4.
(b) Time series of raw (thin lines) and daily-smoothed (thick lines) area integrated EKE.

In spatial, intensity of NIWs reached 600 J/ m? at Q2, while they merely had 300 J/m? at Q3 and
Q4 due to vorticity asymmetry of the CE in which relative vorticities at north side (between Q1 and Q2)
were much larger than those at south side (between Q3 and Q4) (Fig. 6). Zhao et al. (2021, 2023)
pointed out that NIWs generation is significantly influenced by the eddy structure in which eddy with
stronger shears tend to generate more powerful NIWs. In our case, the north side of the CE was merged

with the western boundary current of the northwestern SCS (Fig. 1a) that generated strong shear and
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Figure 6: Time series of raw (thin lines) and daily-smoothed (thick lines) relative vorticity among four moorings.

Vertical gray dashed lines mark two periods of the CE.

3.3 Impact of eddy on near-inertial modes

The CE not only affected frequency and energy of NIWs, but also their modes in the study area.
Here, we calculated vertical-averaged energy (above 200 m) of the first five modes of near-inertial
velocity during eddy period (Figs. 7a-d). All five modes grew since Period1 and reached peak values at
Period2. But the CE has different influence on different modes with low modes (mainly the second and
third modes) being significantly enhanced, especially near the CE’s center. Low modes rose from 46%
(Q2) and 54.4% (Q3) during Periodl to 87.6% (Q2) and 79.5% (Q3) during Period2, respectively (Figs
7e-f). The first mode has longer vertical wavelength and propagates faster than other modes that make
it easy escape from eddy’s influence (Chen et al., 2013). Overall, energy proportion of the first five
modes were promoted from 81.5%, 66.8%, 69%, and 78.5% during Period1 to 90.8%, 88.8%, 87.7%,
94% at Q1-Q4, respectively (Figs. 7e-f), suggesting prominent influence of eddy on near-inertial modes

in the northwestern SCS.

EGUsphere\
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191 4 Discussion

192 Energy exchange between eddy and NIWs is one of the most important processes in oceanic
193 energy cascade (Ferrari and Wunsch, 2009; Alford et al., 2016; Thomas, 2017). By simulations, Jing et
194  al. (2017) found that eddy-NIWs energy transfer efficiency is about 2% in Kuroshio Extension region.
195  Based on surface drifter dataset, Liu et al. (2023) stated that energy transfer efficiency can reach about
196  13%, indicating previous underestimation of eddy impact on NIWs. For obtaining precise result, direct
197  ocean current measurement by long-term mooring is essential (Jing et al., 2018). In this section, eddy-
198  NIWs energy transfer rate during eddy period in the study area was qualified and discussed (Fig. 8).
199  Corresponding to the layer of NIKE enhancement (Fig. 3), large energy transfer rates occurred at above
200 200 m with the peak values at around 100 m during eddy period, rather than surface and mixing layers

201  (Jinget al., 2017; Liu et al., 2023). Both positive and negative transfer rates can reach a magnitude of 6

10
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%1071 m?/s? in the study area, in which they are several times larger than the result of Jing et al. (2018),

but they are smaller than Chen et al. (2023)’s result. The differences may be attributed to the strength of

eddies, their rotation direction and the intensity of NIWs. In addition, eddy-NIWs energy transfer is

largely dependent on eddy structure in which high rate can be caused by strong eddy shear (Zhao et al.,

2023). It can be found that energy transfer at the CE’s edge (Q1 and Q4) were more active than that at

the CE’s center (Q3). Although NIWs at Q4 were relative weak, the strong strains of the low frequency

flow promoted local transfer rates at this area (Figs. 9a-b). Thomas and Daniel (2020) and Li et al.

(2022) both stated that NIWS draw energy from background flow with small energy ratio between

them, vice versa. Similarly, our results show that positive/negative energy transfers from the CE to

NIWs dominated ‘Before Strongest’/’After Strongest’ periods at most mooring stations (Fig. 9c),

indicating an inhomogeneous and bidirectional energy transfer between eddy and NIWs during

different periods in the northwestern SCS.
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series of depth-averaged (above 200 m) shear strain of the CE for each mooring. (¢) Time- (7 days) and depth-

averaged (above 200 m) positive and negative energy transfer rates before and after the NIKE reaching its peak at

During spring 2022, the CE passed through the northwestern SCS. Our four long-term moorings
with ADCP instruments captured the interaction and energy exchange processes between eddy and
local NIWs for the first time in this area. We found that NIWs can be largely enhanced by the passing

CE. Horizontally, the CE transferred more energy to NIWs at the north side than that at the south side
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228  of the CE due to asymmetry of eddy structure and strong shear. In vertical, the enhancement of NIKE
229  occurred at above 200 m, with a maximum exceeding 12 J/m® at a depth of 100 m. Power comparison
230  of different NIWs modes during eddy period indicate that the CE promoted percentage of first five
231  modes, especially the second and third modes. Overall, NIWs drew energy from the CE during the
232 enhancing period of NIKE, while they gave energy back to the CE during weakening period of NIKE.
233 This study is helpful for us to understand multi-scale interaction and energy cascade in the

234 northwestern SCS.
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